
International
Association

Of
Certified

Practicing
Engineers

www.iacpe.com

Knowledge, Certification,
Networking

Page : 1 of 95

Rev: 01

Rev. 01- Feb 2016

IACPE

No 19, Jalan Bilal
Mahmood
80100 Johor Bahru
Malaysia

Introduction to Software
Engineering

CPE LEVEL II

TRAINING MODULE

The International Association of Certified Practicing Engineers is providing the
introduction to the Training Module for your review.

We believe you should consider joining our Association and becoming a Certified
Practicing Engineer. This would be a great option for engineering improvement,
certification and networking.

This would help your career by

1. Providing a standard of professional competence in the practicing
engineering and management field

2. Identify and recognize those individuals who, by studying and passing an
examination, meets the standards of the organization

3. Encourage practicing engineers and management professionals to participate
in a continuing program of personal and professional development

www.IACPE.com

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 2 of 95

Rev: 01

February, 2016

TABLE OF CONTENT

INTRODUCTION 6

Scope 6

General Considerations 7

I. Software Engineering 7

II. Process, Methods, and Tools 8

III. Software Process Models 10

DEFINITIONS 19

THEORY 21

I. Object-Oriented concepts 21

A. Object, class Object and Attributes 24

B. Classes and instances 25

C. Methods 26

D. Inheritance 26

II. Python Program 27

A. Using Python 70

B. Variable 71

C. Assignment statements 71

D. Selection Control Statement : If Statement 72

a. Relational operators 73

b. Value Vs Identity 74

c. The else clause 74

E. Loop Control Statement : The While Statement 76

F. Loop Control Statement : The for statement 78

G. Comprehensions 80

H. Functions 82

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 3 of 95

Rev: 01

February, 2016

1. Input Parameter 83

2. Return values 84

3. The Stack 85

4. Recursion 85

5. Default parameter 86

6. *args and **kwargs 87

7. Decorators 88

8. Lambdas 89

9. Generator functions and yield 90

III. Read and Understand Code written by others 91

A. Build and Run the Program 91

B. Find the High-Level Logic 91

C. Draw Some Flowcharts 92

D. Examine Library Calls 92

E. Search for Key Words 92

F. Leverage the Power of Code Comprehension Tools 92

G. Print the code 93

H. Write Unit Tests 93

I. Comment the Code 93

J. Clean Up the Code 94

REFERENCES 95

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 4 of 95

Rev: 01

February, 2016

LIST OF TABLE

Table 1 Essential attributes of good software 8

Table 2 Phython's relational operators 73

LIST OF FIGURE

Figure 1 Software engineering layers 9

Figure 2 The phases of a problem solving loop 10

Figure 3 The phases within phases of the problem solving loop 10

Figure 4 The linear Sequential Model 12

Figure 5 The prototyping paradigm 14

Figure 6 The RAD Model 15

Figure 7 Component - based development 17

Figure 8 The OO process model 22

Figure 9 Inheritance of operations from class object 23

Figure 10 An alternative representation of an object - oriented class 24

Figure 11 inheritance example 27

Figure 12 Input and output for domain analysis 29

Figure 13 High level use case 31

Figure 14 Elaborated use-case diagram 31

Figure 15 A CRC model index card 33

Figure 16 Class diagram for Generalization / specialization 34

Figure 17 Class diagram for composite aggregates 35

Figure 18 Package (subsystem) reference 36

Figure 19 An analysis model with package references 37

Figure 20 A representation of active state transitions 38

Figure 21 A partial event trace for SafeHome 39

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 5 of 95

Rev: 01

February, 2016

Figure 22 A partial event flow diagram for SafeHome 40

Figure 23 The OO design pyramid 41

Figure 24 Translating an OOA model into an OOD model 43

Figure 25 Process flow for OOD 45

Figure 26 A model of collaboration between subsystems 51

Figure 27 Subsystem collaboration table 52

Figure 28 Abbreviated subsystem collaboration graph for SafeHome 53

Figure 29 Class collaboration diagram for banking application 68

Figure 30 State transition diagram for account class 69

Figure 31 Decision-making Flowchart 73

Figure 32 The else clause Flow chart 75

Figure 33 The While Statement flow chart 76

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 6 of 95

Rev: 01

February, 2016

INTRODUCTION

Scope

National infrastructures and utilities are controlled by computer-based systems and
most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial
system. Entertainment, including the music industry, computer games, and film and
television, is software intensive. Therefore, software engineering is essential for the
functioning of national and international societies.

There are many different types of software systems, from simple embedded systems
to complex, worldwide information systems. It is pointless to look for universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instrument.
Neither of these systems has much in common with a graphics-intensive computer
game. All of these applications need software engineering; they do not all need the
same software engineering techniques.

Software engineers can be rightly proud of their achievements. Of course we still
have problems developing complex software but, without software engineering, we
would not have explored space, would not have the Internet or modern
telecommunications. All forms of travel would be more dangerous and expensive.
Software engineering has contributed a great deal.

Software has become critical to advancement in almost all areas of human
endeavor. The art of programming only is no longer sufficient to construct large
programs. There are serious problems in the cost, timeliness, maintenance and
quality of many software products. Software engineering has the objective of solving
these problems by producing good quality, maintainable software, on time, within
budget. To achieve this objective, we have to focus in a disciplined manner on both
the quality of the product and on the process used to develop the product.

This module is made to provide fundamental knowledge about basic object-oriented
concepts, basic concepts in complexity analysis, design and implement simple GUIs.
In addition, this module describes about techniques for testing and debugging. It

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 7 of 95

Rev: 01

February, 2016

assists engineers to understand design and be able to translate the design into a
working program and code written by others.

This module also covers program constructs such as assignment statements, if
statements, while and for loops. In addition, engineers can understand about
functional style programming in Python including higher-order functions, list
comprehension and generators.

General Considerations

I. Software Engineering

At the first conference on software engineering in 1968, Fritz Bauer defined software
engineering as “The establishment and use of sound engineering principles in order
to obtain economically developed software that is reliable and works efficiently on
real machines”. Stephen Schach defined the same as “A discipline whose aim is the
production of quality software, software that is delivered on time, within budget, and
that satisfies its requirements”. [1]

Both the definitions are popular and acceptable to the majority. However, due to
increase in cost of maintaining software, objective is now shifting to produce quality
software that is maintainable, delivered on time, within budget, and also satisfies its
requirements.

Software engineers adopt a systematic and organized approach to their work, as this
is often the most effective way to produce high-quality software. However,
engineering is all about selecting the most appropriate method for a set of
circumstances so a more creative, less formal approach to development may be
effective in some circumstances. Less formal development is particularly appropriate
for the development of web-based systems, which requires a blend of software and
graphical design skills.

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 8 of 95

Rev: 01

February, 2016

Essential attributes of good Software can be described in the following table:[3]

Table 1 Essential attributes of good software

Product characteristics Description

Maintainability

Software should be written in such a way so that it
can evolve to meet the changing needs of
customers. This is a critical attribute because
software change is an inevitable requirement of a
changing business environment.

Dependability and
security

Software dependability includes a range of
characteristics including reliability, security, and
safety. Dependable software should not cause
physical or economic damage in the event of system
failure. Malicious users should not be able to access
or damage the system.

Efficiency

Software should not make wasteful use of system
resources such as memory and processor cycles.
Efficiency therefore includes responsiveness,
processing time, memory utilization, etc.

Acceptability

Software must be acceptable to the type of users for
which it is designed. This means that it must be
understandable, usable, and compatible with other
systems that they use.

II. Process, Methods, and Tools

Software engineering is a layered technology. Referring to Figure1 , any engineering
approach (including software engineering) must rest on an organizational
commitment to quality. Total quality management and similar philosophies foster a
continuous process improvement culture, and this culture ultimately leads to the
development of increasingly more mature approaches to software engineering. The
bedrock that supports software engineering is a quality focus.

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 9 of 95

Rev: 01

February, 2016

Figure 1 Software engineering layers

The foundation for software engineering is the process layer. Software engineering
process is the glue that holds the technology layers together and enables rational
and timely development of computer software. Process defines a framework for a set
of key process areas (KPAs) that must be established for effective delivery of
software engineering technology. The key process areas form the basis for
management control of software projects and establish the context in which technical
methods are applied, work products (models, documents, data, reports, forms, etc.)
are produced, milestones are established, quality is ensured, and change is properly
managed.

Software engineering methods provide the technical how-to for building software.
Methods encompass a broad array of tasks that include requirements analysis,
design, program construction, testing, and support. Software engineering methods
rely on a set of basic principles that govern each area of the technology and include
modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the
process and the methods. When tools are integrated so that information created by
one tool can be used by another, a system for the support of software development,
called computer-aided software engineering, is established. CASE combines
software, hardware, and a software engineering database (a repository containing
important information about analysis, design, program construction, and testing) to
create a software engineering environment analogous to CAD/CAE (computer-aided
design/engineering) for hardware.[2]

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 10 of 95

Rev: 01

February, 2016

III. Software Process Models

To solve actual problems in an industry setting, a software engineer or a team of
engineers must incorporate a development strategy that encompasses the process,
methods, and tools layers. This strategy is often referred to as a process model or a
software engineering paradigm. A process model for software engineering is chosen
based on the nature of the project and application, the methods and tools to be
used, and the controls and deliverables that are required. In an intriguing paper on
the nature of the software process, L. B. S. Raccoon uses fractals as the basis for a
discussion of the true nature of the software process.

Figure 2 The phases of a problem solving loop

Figure 3 The phases within phases of the problem solving loop

Problem

definition

Technical

development

Solution

Integration

Status

quo

 Status

quo

P

S

S

Pr

S

S

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 11 of 95

Rev: 01

February, 2016

All software development can be characterized as a problem solving loop (Figure 2)
in which four distinct stages are encountered: status quo, problem definition,
technical development, and solution integration. Status quo “represents the current
state of affairs”; problem definition identifies the specific problem to be solved;
technical development solves the problem through the application of some
technology, and solution integration delivers the results (e.g., documents, programs,
data, new business function, new product) to those who requested the solution in the
first place.

This problem solving loop applies to software engineering work at many different
levels of resolution. It can be used at the macro level when the entire application is
considered, at a mid-level when program components are being engineered, and
even at the line of code level. Therefore, a fractal representation can be used to
provide an idealized view of process. In Figure 3, each stage in the problem solving
loop contains an identical problem solving loop, which contains still another problem
solving loop (this continues to some rational boundary; for software, a line of code).

In the sections that follow, a variety of different process models for software
engineering are discussed. Each represents an attempt to bring order to an
inherently chaotic activity. It is important to remember that each of the models has
been characterized in a way that (ideally) assists in the control and coordination of a
real software project.

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 12 of 95

Rev: 01

February, 2016

i. The Linear Sequential Model

Sometimes called the classic life cycle or the waterfall model, the linear sequential
model suggests a systematic, sequential approach to software development that
begins at the system level and progresses through analysis, design, coding, testing,
and support. Figure 4. illustrates the linear sequential model for software engineering

Figure 4 The linear Sequential Model

Analysis Design Code Test

System / Information
Engineering

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 13 of 95

Rev: 01

February, 2016

ii. The Prototyping Model

Often, a customer defines a set of general objectives for software but does not
identify detailed input, processing, or output requirements. In other cases, the
developer may be unsure of the efficiency of an algorithm, the adaptability of an
operating system, or the form that human/machine interaction should take. In these,
and many other situations, a prototyping paradigm may offer the best approach.

The prototyping paradigm

Figure 5

begins with requirements gathering. Developer and customer meet and define the
overall objectives for the software, identify whatever requirements are known, and
outline areas where further definition is mandatory. A "quick design" then occurs.
The quick design focuses on a representation of those aspects of the software that
will be visible to the customer/user (e.g. Input approaches and output formats). The
quick design leads to the construction of a prototype. The prototype is evaluated by
the customer/user and used to refine requirements for the software to be developed.
Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while
at the same time enabling the developer to better understand what needs to be
done.

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 14 of 95

Rev: 01

February, 2016

Figure 5 The prototyping paradigm

iii. The RAD Model

Rapid application development (RAD) is an incremental software development
process model that emphasizes an extremely short development cycle. The RAD
model is a “high-speed” adaptation of the linear sequential model in which rapid
development is achieved by using component-based construction. If requirements
are well understood and project scope is constrained, the RAD process enables a
development team to create a “fully functional system” within very short time periods
(e.g., 60 to 90 days). Used primarily for information systems applications, the RAD
approach encompasses the phases; business modeling, data modeling, process
modeling, application generation, testing and turnover.

Build/revise

mock-up
Listen to

customer

Customer test
drives mock-

up

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 15 of 95

Rev: 01

February, 2016

Figure 6 The RAD Model

60 – 90 days

Business
modeling

Data

modeling

Process

modeling

Application

generation

Testing &
turnover

Business
modeling

Data

modeling

Process
modeling

Application

generation

Testing &
turnover

Business

modeling

Data
modeling

Process

modeling

Application

generation

Testing &
turnover

Team #1

Team #2

Team #3

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 16 of 95

Rev: 01

February, 2016

iv. Evolutionary Software Process Models

There is growing recognition that software, like all complex systems, evolves over a
period of time. Business and product requirements often change as development
proceeds, making a straight path to an end product unrealistic; tight market
deadlines make completion of a comprehensive software product impossible, but a
limited version must be introduced to meet competitive or business pressure; a set of
core product or system requirements is well understood, but the details of product or
system extensions have yet to be defined. In these and similar situations, software
engineers need a process model that has been explicitly designed to accommodate
a product that evolves over time.

The linear sequential model (Figure 4) is designed for straight-line development. In
essence, this waterfall approach assumes that a complete system will be delivered
after the linear sequence is completed. The prototyping model is designed to assist
the customer (or developer) in understanding requirements. In general, it is not
designed to deliver a production system. The evolutionary nature of software is not
considered in either of these classic software engineering paradigms.

Evolutionary models are iterative. They are characterized in a manner that enables
software engineers to develop increasingly more complete versions of the software.

• The Incremental Model

• The Spiral Model

• The WINWIN Spiral Model

• The Concurrent Development Model

v. Component – Based Development

Object-oriented technologies provide the technical framework for a component-
based process model for software engineering. The object-oriented paradigm
emphasizes the creation of classes that encapsulate both data and the algorithms
used to manipulate the data. If properly designed and implemented, object-oriented
classes are reusable across different applications and computer-based
system architectures.

The component-based development (CBD) model (Figure 7) incorporates many of
the characteristics of the spiral model. It is evolutionary in nature, demanding an

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 17 of 95

Rev: 01

February, 2016

iterative approach to the creation of software. However, the component-based
development model composes applications from pre-packaged software
components (called classes).

Figure 7 Component - based development

The component-based development model leads to software reuse, and reusability
provides software engineers with a number of measurable benefits. Based on
studies of reusability, industry studies, report component assembly leads to a 70
percent reduction in development cycle time; an 84 percent reduction in project cost,
and a productivity index of 26.2, compared to an industry norm of 16.9. Although
these results are a function of the robustness of the component library, there is little
question that the component-based development model provides significant
advantages for software engineers.

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 18 of 95

Rev: 01

February, 2016

vi. The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal
mathematical specification of computer software. Formal methods enable a software
engineer to specify, develop, and verify a computer-based system by applying a
rigorous, mathematical notation. A variation on this approach, called cleanroom
software engineering, is currently applied by some software development
organizations.

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 19 of 95

Rev: 01

February, 2016

DEFINITIONS

Software Engineering - A discipline whose aim is the production of quality software,
software that is delivered on time, within budget, and that satisfies its requirements.

Algorithm- An algorithm (pronounced AL-go-rith-um) is a procedure or formula for
solving a problem

Business model- A business model is the conceptual structure supporting the
viability of a business, including its purpose, its goals and its ongoing plans for
achieving them.

Computer-aided design/engineering - CAD (computer-aided design) software is
used by architects, engineers, drafters, artists, and others to create precision
drawings or technical illustrations. CAD software can be used to create two-
dimensional (2-D) drawings or three-dimensional (3-D) models.

Data modelling - Data modeling is a process used to define and analyze data
requirements needed to support the business processes within the scope of
corresponding information systems in organizations.

Hardware - In information technology, hardware is the physical aspect of computers,
telecommunications, and other devices.

Information systems - is the collection of technical and human resources that
provide the storage, computing, distribution, and communication for the information
required by all or some part of an enterprise.

Operating system -An operating system (OS) is system software that manages
computer hardware and software resources and provides common services for

computer programs - The operating system is a component of the system software
in a computer system.

Product requirements - defines how the product will do for the interface then allows
designers and engineers to use their expertise to provide optimal solutions to
requirements

Requirements specification -is a comprehensive description of the intended
purpose and environment for software under development

International
Association

Of
Certified

Practicing
Engineers

INTRODUCTION TO SOFTWARE
ENGINEERING

CPE LEVEL II

TRAINING MODULE

Page 20 of 95

Rev: 01

February, 2016

Software design - Software design is actually a multistep process that focuses on
four distinct attributes of a program: data structure, software architecture, interface
representations, and procedural (algorithmic) detail. The design process translates
requirements into a representation of the software that can be assessed for quality
before coding begins.

Software requirements analysis - The requirements gathering process is
intensified and focused specifically on software. To understand the nature of the
program(s) to be built, the software engineer ("analyst") must understand the
information domain for the software, as well as required function, behavior,
performance, and interface.

Testing - Conducting tests to uncover errors and ensure that defined input will
produce actual results that agree with required results.

UML - Unified Modeling language (UML) is a standardized modeling language
enabling developers to specify, visualize, construct and document artifacts of a
software system.

GUI - A graphical user interface (GUI) is an interface through which a user interacts
with electronic devices such as computers, hand-held devices and other appliances.

Object-oriented programming (OOP) - A schematic paradigm for computer
programming in which the linear concepts of procedures and tasks are replaced by
the concepts of objects and messages.

Syntax - the grammatical rules and structural patterns governing the ordered use of
appropriate words and symbols for issuing commands, writing code, etc., in a
particular software application or programming language.

Class - A class is used in object-oriented programming to describe one or more
objects. It serves as a template for creating, or instantiating, specific objects within a
program.

Attribute - in computing, an attribute is a specification that defines a property of an
object, element, or file. It may also refer to or set the specific value for a given
instance of such.

Tuple - A tuple in Python is much like a list except that it is immutable changeable)
once created.

